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It is demonstrated that the thermocapillarity effect can either raise or lower 
the threshold of surface wave excitation, depending on the conditions of heat- 
ing. 

Under consideration is a horizontal layer of fluid with a free surface, bounded from 
below by an isothermal solid plate held at a constant temperature y~0 where 7 = l in the case 
of heating from below and y = --I in the case of heating from above. The coefficient of sur- 
face tension ~ depends on the temperature ~ according to the relation a = ao -- ~ (~ > 0). 

The corresponding Cartesian system of coordinates is selected so that the xOy plane will 
coincide with the unperturbed interface and with the z axis oriented vertically upward. The 
layer moves about the vertical axis according to the law a Cos mt with an amplitude a < I. 
The fluid is assumed to be incompressible. In the reference system tied to the layer, we 
write the equations of motion conventionally [l], but replace the gravitational acceleration 
g = (0, 0, --g) with g(t) = (1 -- ~ cos ~t)g, where ~ ~ a~a/g. 

Inasmuch as oscillatory motion of the fluid layer does not disturb the equilibrium pos- 
sible in this system but only modulates the pressure, the conditions for equilibrium become 

Vo = 0, ~o = - - G z ,  ~o = O, O--?~~ 

P0 = RE (1 - -  ~ cos ~t) (z + ~Gz2/2). ( 1 ) 

H e r e  b o t h  p r e s s u r e  p and  t e m p e r a t u r e  @ a r e  r e a d  f r o m  t h e  s u r f a c e  a s  d a t u m .  

l .  L e t  us  e x a m i n e  t h e  s t a b i l i t y  o f  t h i s  e q u i l i b r i u m ,  f o r  t h e  p u r p o s e  o f  w h i c h  we w i l l ,  
a s  u s u a l l y ,  a n a l y z e  p e r t u r b a t i o n s  o f  v e l o c i t y ,  p r e s s u r e ,  and  t e m p e r a t u r e  [ l ] .  We s e l e c t  
(uo/pg) I/=, (Uo/pg3) I/4, (pg3/~o)I/", (aog/P) I/", (aopg) ~/2, and G(ao/pg) ~/2 as units of 
length, time, frequency, velocity, pressure, and temperature, respectively, so that for the 
perturbations we obtain the linearized system of equations 

0v 1 
" 0--7- = - -  VP + ~ -  V 2v - -  q~g (trig, 

p( a8 _ ~ ) = i  
at -A- V2~' V ' v  - -  0, (2)  

where A ~ v-~(a~/p~g)~/~; q ~ 8G(uo/Pg)~/~; P ~ v/X. 

For a small deviation ~ of the surface from its equilibrium position we obtain at z = 0 
[ 1 ,  2] 

a~ =.w, ~ - - ~ +  i a__~_~ = o  ' 
at b Oz 

au aw = _ ~A ( a~ a~ ) 
a--f - +  a~ ax ax ' 

av aw (a~ a~)  
Oz + oF - - - - ~ A  , Oy ag ' 

\ 8x 2 + --~lcosf~t $ J 2 
' A 

where p - y~~ b - ~(~o/Pg)~/=/~t. 
case of heating from below and ~ < 0 in 

am 
0Z ' 

(3) 

It follows from the definition of ~ that ~ > 0 in the 
the case of heating from above. 
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At the bottom of the layer z = -H (H -= h/hx) we have 

v = 0 ,  ~ = 0 .  (4) 
For simplicity, we will ,consider the case of a layer thickness h larger than the capil- 

lary thickness h, --- (Uo/0g) ~/2 but smaller than the thermocapillary depth h2 - (~/pg~)~/~ or 
l<< H < h~/h~ = (O/aoB) ~/=. This will allow us, on the one hand, to consider an infinitely 
deep layer and, on the other hand, to disregard in the system of equations (2) the term with 
the convective lifting force [2, 3], which is valid for sufficiently thin layers of fluid. 
These assumptions are not contradictory, since for most fluids: h~/hx ~ l and the penetra- 
tion depth for waves is approximately equal to h,. 

We perform the Fourier transformation with respect to variables x and y. Considering 
that the quantities Iv[, I~I, ]~v/~xjl, [~/~xj[ are bounded at [xj = x, Yl § | and elimina- 

ting the pressure as well as the x, y components of velocity, we obtain instead of system (2)- 
(4) 

( )~ ( ) O~ -w = A k" k~ O ~ aw  

oF Oz'. at ' 

k ~ O - - A P  a o . = _ p A w ,  k~=~k~,+k~ v. (5) 
az 2 at 

At z = 0 we have 

o~ I oo o ~  
ot = w ,  o-~+y 0--7-=0, -~-z, +k,w+k~a(O--~)=O, (61 

,[o ,(o.. )] 
k Ot A Oz 2 3k 2 Ow + ( ~  -q~ c ~ )  ~ = o, (7) 

where k = (kx, ky) is the wave vector, ~= -= k a + k, and ~- nk. 

The general solution to problem (5) with conditions (4), (5), (7) consists of solutions 
with nonhomogeneous boundary conditions (~ q~ 0) and with homogeneous ones (~ = 0), respec- 
tively. 

Solving Eqs. (5) for ~ = 0, we obtain for w(t) and O(t) 

w = c o (exp kz - -  exp 1/" k" + A~. z) exp Lt, 0 = c o (~-! exp kz 

+ c o exp V-~  + PAXz - -  [P/(P - -  1) ~] exp t r ~  + AXz} exp kt, (8) 

where X i s  d e t e r m i n e d  from the  e q u a t i o n  k a(b + f ~ +  PAX) - kay[  (r + AAP -- f ~  + PAA)/(P -- 
1) -- k ] .  C o e f f i c i e n t  c o i s  d e t e r m i n e d  from c o n d i t i o n s  (6) w i t h  ~ = 0. 

Solving Eqs. (5) for nonhomogeneous boundary conditions by the method of Laplace trans- 
formation with respect to time and letting ~(t = 0) - w(t -O) = O(t - 0) = O, we obtain 

W (s) = [sZ (s) - -  C (s)] exp kz + C (s) exp V'k t + As z, 

where 

C (s) = - -  2k2Z (s)lA + lJ, I#Z (s)ts (b + Y I~ + PAs) + ( 9 )  

+ 2 ~ ( k  + VId+PAs--PV'kT-~As') Yk*+ PAs). 

Here W(s) and Z(s) are the Fourier transforms of functions w(t) and g(t), respectively. 

2. We now insert expression (9) into Eq. (7) and perform.the inverse Laplace transfor- 
mation. Using the solution (8) to the homogeneous boundary-value problem with accuracy I/A 
and ~//A, for finite values of the heat transfer coefficient b we obtain for ~(t) the equa- 
tion 

t 

d~ d~ _ ~ I ~ ( t -  ~) d---!--~ 
d22 + 2 6  dt . } / ' a T  

0 

where ~ : 2k2/A, e ~ v k a / ~ .  

~ - ( ~ - - q ~ c o s ~ ) ~  = - - c O ( ~ + 8 - - S V ' l + 2 X / 5 ) e x p ~ f f i f f ( ~ ,  t), (10) 
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It follows from Eq. (10) that in this approximation and with %(b) = 0 the stability of 
equilib~cium of the fluid surface does not depend on the conditions of heat transfer. 

In the case of large b the equation of motion for ~ will be analogous, but it will be 
necessary to let e = 0 and to reduce ~ by ~k3/b. 

When ~ = 0, then Eq. (10) is a nonhomogeneous Mathieu equation with damping. Depending 
on the conditions of heating, function f(%, t) can increase in time when ~ > 8k(k + b)/PA 2 
or decrease in time when ~ < 8k(k + b)/PA 2. In the case of steady convection we have % = 0 
and f(~, t) becomes zero. 

When % > 0, then on the surface of the fluid can appear waves even in the absence of 
paranmtric excitation. Indeed, a solution of Eq. (I0) with ~ = 0 by the method of averaging 
yields [4, 5] 

t 

(t) = [ (~, ~) sm ~ (t -- ~) ~ - -  M 1 cos ~ot ,-]- M~ sin ~]  exp (-- St) q- M, cos ~ ~ t ( i ! ) 
0 

- -  s/f2--~0--2a~ sin.  8 1 / ~  o s  ) t I exp( - -8  ~ e  ')t, 

M, = (D. + D,) ~ ,  M, = (Do-- DO ~ ,  
T t 

dr ~)sinP4(z--x)d• 

0 0 0 

This indicates that a wave will appear on the surface of the fluid even without parametric 
excitation if 

~ 8 ,  e:>O; ~ ) 8 + e / ( 8 ~ )  1/2, e:>O. (12 )  

In the case of heating from above (~ < 0), surface waves will appear on the surface of 
the fluid at lower values of %. When b is large, then excitation of waves occurs at % ~6. 

When ~ # 0 and %~0 (~Sk(k + b)/PA2), then on the surface appear parametric waves 
with frequency 9/2 at 

~ , =  ~+--g- , (:3) 

with k, determined from the equation 

k~ + k, = fl~/4. (14) 
The expression for function ~(t) here is  analogous to expression (11), with fl/2 replacing 
~o and ~/2~ -- 2k(l + ~kr ~)/A replacing (-~ -- e/dS~g). 

It follows from relation (14) that by controlling the conditions of heating (from below 
or from above) one can either inhibit or facilitate parametric excitation of surface waves. 

When ~=0 and ~ > 0, then parametric excitation of surface waves occurs at ~ ,  if 
~/~--(Sq-z/]/2-~). When ~>~/2Q --(8 + g/V2-~, then on the surface of the fluid appears 
a wave with frequency ~/2 in the c~se of resonance (14) or with frequency fl otherwise. In the 
latter case expression (13) defines the conditions for excitation of waves with frequency 9. 

NOTATION 

a, coefficient of surface tension; v, kinematic viscosity; ~, angular velocity; ~, 
dimensionless frequency; p, density of the fluid; 8, coefficient of thermal volume expansion; 
X, thermal diffusivity; q, dimensionless modulation amplitude; o, thermocapillary constant; 
0 ~, 00, O , temperatures; 6 and e, dissipation parameters; ~, a parameter; ~, deviation of the 
surface from its equilibrium position; x , thermal conductivity; %, increment; x, y, z, Car- 
tesian coordinates; t, time; a, vibration amplitude; g, gravitational acceleration; v = (u, 
v, w), velocity Vector; po, p, pressures; G, temperature gradient; P, Prandtl number; I/A, 
a small parameter; kj, wave number along the j-th axis; W(s), Fourier transform of the sur- 
face deviation from the equilibrium position; Z(s), Fourier transform of the z-component of 
velocity; h, dimensional layer thickness; H, dimensionless layer thickness; b, dimensionless 
heat-transfer coefficient; 2, heat-transfer coefficient; and c ~ , normalizing factor. 

305 



LITERATURE CITED 

I. L.D. Landau and E. M. Lifshits, Mechanics of Continuous Media [in Russian], GITTL, 
Moscow--Lenlngrad (1944). 

2. G.Z. Gershuni and E. M. Zhukovitskii, Convective Stability of Incompressible Fluids, 
Halsted Press (1976). 

3. R.V. Birikh, "Thermocapillary convection in horizontal layer of fluid," Zh. Prikl. 
Mekh. Tekh. Fiz., No. 3, 69-72 (1966). 

4. A.N. Filatov, Method of Averaging for Differential and Integrodifferential Equations 
[in Russian], FAN, Tashkent (197]). 

5. V.V. Moskvitin, Resistance of Viscoelastic Materials [in Russian], Nauka, Moscow 
(|972). 

CONTACT HEAT AND MASS TRANSFER BETWEEN A HOT GAS AND 

A FLOWING LIQUID FILM 

P. I. Geshev, O. P. Kovalev, 
O. Yu. Tsvelodub, and Yu. V. Yakubovskii 

UDC 536.27.001.572 

A mathematical model of contact heat and mass transfer is proposed and the cal- 
culations are compared with the experimental data. 

One method of utilizing the heat of the flue gases escaping from thermal power plants 
is to employ them to heat water in film contact apparatus; this has less resistance than a 
packed column, so that the apparatus can be mounted in the exhaust system of the power plant 
without it being necessary to install an exhaust fan. 

In order to investigate the process of heat and mass transfer in heaters of this kind 
we designed an experimental set-up If] in which the film contact apparatus consisted of three 
modules comprising box-type structures of rectangular cross section measuring 0.5 • 0.3 • 1.0 
m with three working plates 0.5 m wide and 0.94 m high, the distance between plates being 
0.05 m. In order to eliminate heat losses to the ambient medium, all the modules were insu- 
lated on the outside with asbestos lagging. 

The liquid film, created by special sprinklers [2], flowed over both sides of the plates 
and the inner surfaces of the module hbusing, so that the gas was able to pass through four 
channels with wetted walls. 

The mean temperature of the liquid was measured with thermocouples mounted in the water 
headers, at the inlet to the equipment, between the modules and at the outlet. The gas tem- 
perature was measured at the inlet to the equipment and at the outlet. The moisture content 
of the gas at the inlet was calculated with allowance for the humidity of the starting air 
and the moisture formed as a result Of combustion of the fuel. The flow rates of fuel and 
water were measured volumetrically, that of the starting air from the pressure drop in a 
convergent channel. The final moisture content of the gas was determined by the balance 
method. 

Direct contact between the hot gas and the liquid film is accompanied by simultaneous 
processes of convective heat transfer in the film and the gas phase and diffusion of vapor 
in the gas. These processes are interrelated and rather difficult to calculate. 

We solved this problem by means of a contact heat and mass transfer model based on aver- 
aged differential heat and mass transfer equations, subject to the following assumptions: by 
virtue of symmetry the heat fluxes at a wetted plate of infinitely small thickness and at the 
channel axis are equal to zero, the transfer processes are steady-state, the motion of the 
gas and the liquid is directed along the x axis, there are no heat losses to the ambient 
medium, changes of flow rates due to phase transitions can be neglected. 
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